Система гистосовместимости человека

HLA-типирование

Система гистосовместимости человека

Гистосовместимость – взаимозаменяемость однотипных тканей различных людей.

Главный комплекс гистосовместимости (англ. MHC) – система генетического сходства, которую разработали с целью улучшения принятия человеческим организмом пересаженных элементов. Данная система также действительна для позвоночных животных.

Поскольку за реакции отторжения отвечает иммунная система, то непосредственными элементами MHC являются ее клетки – лейкоциты.

Для обозначения Главного комплекса гистосовместимости людей используется понятие Человеческий лейкоцитарный антиген.

Для краткого обозначения этого понятия используется английская аббревиатура HLA, расшифровка которой идентична российскому переводу. HLA кодируется генами 6-й хромосомы.

Антиген – химическое соединение преимущественно белковой природы. Его функцией является образование антител и подобные реакции иммунной системы.

Анализ на гистосовместимость

HLA типирование – анализ, который врачи назначают паре, испытывающей затруднения с вынашиванием ребенка, когда причина такого явления неясна. Иммунологическая идентичность родителей ощутимо затрудняет рождение ребенка.

HLA типирование назначают также в случае бесплодия, родственной связи супругов, безрезультатных попыток ЭКО.

Степень гистосовместимости пары узнают с помощью анализов на антигены HLA I, II класса.

Выделенные лейкоциты исследуют, применяя метод цепной полимеразной реакции.

Цена HLA типирования 1 пары генов достигает 1-2 тыс. руб.

Значения HLA для вынашивания ребенка

Различные антигены матери и отца являются условием, необходимым для полноценного вынашивания ребенка. Благодаря их соединению у зародыша вырабатываются специализированные антигены, которые воспринимаются иммунными клетками матери как «чужие».

Реакцией женского организма на такие клетки ребенка является включение особых механизмов, направленных на защиту плода. В частности, вырабатываются антитела к специализированным NK-клеткам-киллерам.

В противном случае последние начинают подавлять развитие зародыша и беременность прерывается.

Если мужчина и женщина имеют одинаковые антигены, у ребенка сформируются антигены, идентичные материнским. Женский организм классифицирует такие клетки зародыша как свои, поэтому механизмы для защиты плода не запускаются.

Иммунитет идентифицирует плод как нечто наподобие опухоли. Следственно, это нечто подлежит уничтожению путем приостановления процесса деления клеток.

В повседневной жизни это позволяет предотвратить многие заболевания, но при беременности данный процесс приводит к некрозу тканей зародыша и провоцирует выкидыш.

Аллели

У каждого гена могут быть десятки вариантов. Сочетания этих вариантов (аллелей) составляют разнообразные комбинации генов. Поэтому более точным будет утверждение, что риск выкидыша определяет именно число аллелей.

Если у супругов схожими оказываются 2–3 аллели HLA-генов, риск повторяющихся выкидышей составляет 35 %. При 4 и больше совпадающих аллелях невынашиваемость достигает почти 100 %.

Попытки ЭКО в таких случаях будут безуспешными.

Некоторые варианты антигенов вызывают отклонения в процессе сперматогенеза, что приводит к ухудшению качества половых клеток и сказывается на развитии плода. В таком случае проведение HLA-типирования рекомендуют только отцу.

Помимо вынашиваемости плода, комплекс гистосовместимости влияет на процесс оплодотворения, имплантацию зародыша.

Классы генов

Среди антигенов HLA выделяют 2 класса. Первый образуют антигены областей 6 хромосомы A, B, C, второй —D, DP, DQ, DR.

Антигены I класса присутствуют на всех клетках, а II— только на тех, которые являются участниками иммунологических реакций (B-лимфоцитов, активированных T-лимфоцитов, моноцитов, дендритных клеток, макрофагов).

Если генотип пары образуют HLA-антигены II класса, это дает основание говорить об иммунных формах невынашивания беременности.

HLA-B27

HLA-B27 – антиген, выявление которого является наиболее частой причиной проведения типирования.

HLA-B27 представляет собой молекулу I класса гистосовместимости.

Ученые предполагают, что HLA-B27 способна провоцировать аутоиммунную реакцию с помощью микробных пептидов, вызывающих артрит. Таким образом, действие молекулы HLA-В27 может направляться против тканей содержащего ее организма.

В Европе HLA-B27 имеют 8 % здорового населения. Антиген HLA-B27 очень часто вызывает воспаление определенных костных сочленений и суставов.

Также данный антиген может провоцировать вторичные артриты (последствия мочеполовых, кишечных инфекций).

Кроме того, HLA-B27 влияет на возникновение таких патологий:

  • болезни Бехтерева;
  • синдрома Рейтера;
  • артрита при псориазе;
  • артрита, обусловленного патологиями кишечника.

Маловероятно, но не исключено, что синдром Рейтера и болезнь Бехтерева обнаружат и у пациента, не имеющего антигена HLA-B27. Если же анализы показали наличие HLA-B27, то в целях профилактики воспаления суставов следует старательно бороться с бактериальными возбудителями кишечных болезней, предупреждать половые инфекции.

Расшифровка анализов

К расшифровке результатов анализов следует привлечь врача-иммунолога. При исследовании имеют значение выявленные аллели, которые обозначаю цифрами. В таблицу записывают и буквенно-цифровые кодировки белков DR и DQ: это названия общих для всех генов DRB1, DQA1, DQB1, к которым как раз и добавляют цифровые шифры аллелей.

Проводя HLA типирование по DRB1, результаты учитывают с точностью до 2, по двум оставшимся генам – до 4 цифр. Первые 2 цифры кодируют номер группы вариантов генов, последующие 2 – вариант гена этой группы.

Варианты могут быть разделены дробью – это означает, что присутствует один из перечисленных вариантов, но точнее определить не удалось.

Во второй столбик заносят варианты кодируемых геном белков, обнаруженных на поверхности клеток. Иногда вариант белка записывают в скобочках – это означает, что данное название старое, впоследствии оно было скорректировано в ходе молекулярно-генетических исследований.

Лечение

Супругов со схожими HLA-антигенами направляют на лечение. В одних случаях женщине назначают иммунизацию, для осуществления которой используют концентрированную культуру лимфоцитов партнера.

Это приводит к многократному возрастанию антигенной нагрузки. В других случаях проводят лечение препаратами иммуноглобулинов человека.

При этом достигаются иммуномодулирующий, иммуностимулирующий эффекты.

Если генетическая несовместимость подтвердится, не стоит терять надежду. Такой паре следует обратиться к хорошему специалисту, который бы занимался ведением беременности от зачатия до родов. Важно выполнять все указания врача.

Очень часто вследствие проведенного лечения у пары рождается долгожданный здоровый малыш. Современная медицина располагает необходимыми препаратами, методиками, которые позволяют преодолеть проблему. Дети у таких супругов рождаются полноценными. Единственным последствием генетической несовместимости может быть ослабление иммунной системы, о чем врачи предупреждают будущих родителей.

Источник: https://ekobaby.info/diagnostika-besplodiya/obsledovanie-muzhchiny/hla-tipirovanie.html

Молекулярно-генетическое исследование HLA-B27 при диагностике аутоиммунных болезней

Система гистосовместимости человека
array(19) { [“catalog_code”]=> string(6) “180038” [“name”]=> string(152) “Молекулярно-генетическое исследование HLA-B27 при диагностике аутоиммунных болезней” [“period”]=> string(1) “5” [“period_max”]=> string(2) “12” [“period_unit_name”]=> string(6) “к.д.

” [“cito_period”]=> NULL [“cito_period_max”]=> NULL [“cito_period_unit_name”]=> NULL [“group_id”]=> string(6) “392581” [“id”]=> string(4) “8010” [“url”]=> string(93) “molekularno-geneticheskoje-issledovanije-hla-b27-pri-diagnostike-autoimmunnyh-boleznej-180038” [“podgotoa”]=> string(136) “

Не менее 3 часов после последнего приема пищи, можно пить воду без газа.

” [“opisanie”]=> string(10468) “

Главный комплекс гистосовместимости – ГКГС (англ.

МНС – Major Histocompatibility Complex) представляет собой систему генов, контролирующих синтез антигенов, которые определяют гистосовместимость тканей при пересадках органов и индуцируют реакции, вызывающие отторжение трансплантатов.

Поверхностные структуры цитомембраны клеток, индуцирующие реакции отторжения, получили название антигенов гистосовместимости, а кодирующие их гены были названы генами гистосовместимости.

МНС регулирует иммунный ответ, кодирует способность распознавать «своё» и «чужое», отторгать чужеродные клетки, способность синтезировать ряд молекул иммунной системы. Он определяет предрасположенность человека к ряду болезней (диабет, злокачественные опухоли, артриты, амилоидоз, болезни сердечно-сосудистой системы, почек и др.).

У человека главная система гистосовместимости получила название HLA-система (Human Leukocyte Antigens). Это система генов, контролирующих синтез антигенов гистосовместимости. Она состоит из трех регионов расположенных на коротком плече 6-й хромосомы.

Эти регионы носят название: класс 1, класс 2, класс 3 (класс I, класс II, класс III). В состав региона входят гены или локусы.

В названии каждого HLA-гена присутствует буквенное обозначение локуса (А, В, С) и порядковый номер, например: HLA-A3, HLA-B27, HLA-C2 и т.д.

Антиген HLA-B27 относится к молекулам главного комплекса гистосовместимости первого класса, или к MHC-I. Выявление носительства HLA-B27 является одним из наиболее современных подходов в ранней диагностике и выборе тактики лечения при ряде аутоиммунных заболеваний.

Набор антигенов (HLA-статус) уникален для каждого человека. От набора антигенов HLA зависит предрасположенность к разным заболеваниям, в том числе и к аутоиммунным. При этом известно, что гены МНС I класса отличаются высокой степенью полиморфизма. Так, для гена HLA-А известны порядка 60, для HLA-B – 136, а для гена HLA-С – 38 аллельных вариантов*.

*Гены характеризуются свойством аллельного состояния. По существу, аллельные варианты гена – это его альтернативные (по фенотипическому проявлению) формы.

В классической генетике аллели так и определяли как альтернативные фенотипические состояния известного признака у жизнеспособных особей, имея в виду, что за признаком стоит наследственный задаток (ген).

В настоящее время аллели – это варианты нуклеотидной последовательности участка молекулы ДНК, соответствующего, например, структурному (смысловому, кодирующему, транскрибируемому и транслируемому, экспрессируемому) гену.

У здоровых представителей европеоидной расы антиген HLA-B27 встречается в 7-10 % случаев. В то же время, он обнаруживается значительно чаще у больных некоторыми аутоиммунными заболеваниями.

На сегодняшний день HLA-B27 является хорошо изученным антигеном, имеющим большое значение в дифференциальной диагностике аутоиммунных болезней.

Согласно Международной классификации ревматических болезней, выделяют отдельную группу спондилоартритов, ассоциированных с антигеном HLA-B27.

Спондилоартриты, ассоциированные с антигеном HLA-B27

Заболевание Частота обнаружения аллеля HLA-B27, % Анкилозирующий спондилоартрит

90-95
Болезнь Рейтера 70-85
Реактивный артрит 36-100
Псориатический артрит 54
Энтеропатические артриты 50

Основными клиническими проявлениями всех перечисленных нозологий являются асимметричные олигоартриты и поражение крестцово-подвздошного сочленения.

При классической форме анкилозирующего спондилоартрита у больных в течение нескольких лет может развиться тотальный анкилоз всего позвоночного столба. Данная группа заболеваний является серонегативной, т.е. у пациентов в крови отсутствуют антинуклеарные антитела и ревматоидный фактор.

Кроме того, эти заболевания нередко сопровождаются развитием грозных осложнений в виде периферических артритов, офтальмопатий, поражений мочеполового тракта, кишечника и кожи. Риск развития заболевания у индивидуума в случае носительства HLA-B27 оценивается в 20–30 %.

Помимо указанной группы спондилоартритов тесную ассоциацию с наличием антигена HLA-B27 демонстрируют такие заболевания, как острый передний увеит и реактивные артриты у детей.

Показания к исследованию:

  • необходимость исключить анкилозирующий спондилит у пациента, родственники которого страдают этим заболеванием;
  • дифференциальная диагностика неполной формы синдрома Рейтера (без уретрита или увеита) и гонококкового артрита;
  • дифференциальная диагностика синдрома Рейтера, сопровождающегося тяжелым артритом, и ревматоидного артрита;
  • при обследовании больных ювенильным ревматоидным артритом.

Клиническая значимость. Определение антигенов HLA-B27 у пациентов помогает проводить дифференциальную диагностику ассоциированных аутоиммунных заболеваний, а также может служить основанием для проведения своевременной антибактериальной терапии в случае обнаружения указанных инфекционных возбудителей. Если антиген HLA-B27 не обнаружен, анкилозирующий спондилит и синдром Рейтера маловероятны, хотя полностью исключить эти заболевания в данном случае нельзя.

Интерпретация результатов:

Пример результата исследования

Обращаем Ваше внимание на то, что интерпретация результатов исследований, установление диагноза, а также назначение лечения, в соответствии с Федеральным законом № 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации» от 21 ноября 2011 года, должны производиться врачом соответствующей специализации.

” [“serv_cost”]=> string(4) “1890” [“cito_price”]=> NULL [“parent”]=> string(3) “392” [10]=> string(1) “1” [“limit”]=> NULL [“bmats”]=> array(1) { [0]=> array(3) { [“cito”]=> string(1) “N” [“own_bmat”]=> string(2) “12” [“name”]=> string(22) “Кровь с ЭДТА” } }}

Источник: https://www.cmd-online.ru/analizy-i-tseny/molekularno-geneticheskoje-issledovanije-hla-b27-pri-diagnostike-autoimmunnyh-boleznej-180038/

Кобылы определяют, беременеть или нет, по главному комплексу гистосовместимости… соседа • Новости науки

Система гистосовместимости человека

Исследования механизмов, с помощью которых позвоночные животные отличают своих сородичей, ведутся уже почти 70 лет. Среди таких механизмов наиболее изучена группа белков главного комплекса гистосовместимости, которые помогают выявить родственников среди окружающих.

Степень родства может влиять на различные аспекты поведения животных. Так, в недавнем исследовании было показано, что у кобыл выбор между сохранением или прерыванием беременности напрямую определяется тем, какой жеребец — близкий или далекий генетически — находится с ними рядом на ранней стадии их беременности.

И совершенно не зависит от степени их родства с настоящим отцом будущего жеребенка.

Еще в 50-х годах прошлого века ученые заметили, что многие позвоночные животные стремятся спариваться с генетически отдаленными партнерами, избегая прямых родственников и просто генетически близких особей. До полной разгадки того, как именно им удается распознавать родство, нам еще далеко. А самая первая гипотеза на этот счет появилась примерно 20 лет спустя, и пришла она из иммунологии.

Многогранные белки ГКГ

Главный комплекс гистосовместимости (ГКГ, Major histocompatibility complex, MHC; у человека он исторически называется человеческими лейкоцитарными антигенами, Human Leucocyte Antigen, HLA) был первоначально открыт как главное препятствие для трансплантации органов. Оказалось, что чем сильнее похожи белки ГКГ у донора и реципиента, тем больше шансов, что трансплантат приживется. А если разница между ними велика, то это приводит к иммунному отторжению пересаженного органа.

Как это работает? На поверхности большинства клеток в организме человека (и других позвоночных) выставлены эти самые белки ГКГ. Их набор у каждой особи уникален, так как кодируются они разнообразными последовательностями из шести генов.

Специальные клетки иммунной системы, естественные, или натуральные, киллеры (НК-клетки), ползают в тканях организма и проверяют все встречные клетки на наличие белков ГКГ.

Если НК-клетка не видит на поверхности какой-нибудь клетки знакомые ей белки, то она посылает в нее сигнал к самоубийству (апоптозу), и клетка умирает. Это позволяет справляться с опухолевыми клетками, у которых белки ГКГ часто пропадают с поверхности.

Однако тот же самый механизм препятствует трансплантации: если наборы ГКГ донора не похожи на наборы ГКГ реципиента, ткань или орган отторгается. Поэтому доноров стараются подбирать среди близких родственников, у которых хотя бы часть генов, кодирующих ГКГ, общая с реципиентом.

Но это не единственная функция главного комплекса гистосовместимости. ГКГ также нужен, чтобы иммунная система получала информацию о белках организма. Каждая клетка время от времени измельчает собственные белки: режет их на короткие части — пептиды.

Затем пептиды помещаются в щель на одном из белков ГКГ, и комплекс ГКГ-пептид выставляется на поверхность клетки (рис. 2). Таких комплексов на каждой клетке — сотни, они время от времени обновляются: клетка поглощает старые комплексы и выставляет новые.

Иммунные клетки другого типа, Т-клетки (они же — Т-лимфоциты), «сканируют» все встречные пептиды, связанные с ГКГ. В процессе развития Т-клетки проходят обучение, где привыкают игнорировать все нормальные пептиды (часто встречающиеся в организме).

Но как только Т-клетки встречают незнакомый пептид, они активируются и запускают иммунный ответ. Этот механизм, опять же, помогает в борьбе с опухолями, которые часто несут испорченные или мутантные белки (собственно, поэтому в опухолях часто включаются механизмы, скрывающие ГКГ с поверхности).

Подобная система работает и против инфекций: но здесь работают специальные клетки-шпионы (антигенпрезентирующие клетки). Они поглощают белки из межклеточного пространства, измельчают и выставляют на поверхность. Это позволяет активировать иммунный ответ при попадании бактерий в организм.

Как узнать родственника?

Итак, у всех позвоночных есть белки, с помощью которых иммунная система отличает один организм от другого. Вполне логично использовать их для распознавания особей независимо от иммунитета. Происходит это следующим образом.

Молекулы ГКГ у каждой особи имеют пептидсвязывающую щель уникальной формы. Соответственно, пептиды, которые в нее помещаются (ГКГ-пептиды), тоже приобретают характерную форму. Они представляют своеобразный слепок с молекул ГКГ (рис. 3).

Чем ближе родственники, тем больше похожи у них формы ГКГ-пептидов.

Время от времени комплексы ГКГ-пептид или отдельные пептиды смываются с клеток и поступают в кровь, а затем оказываются в моче. И после этого их уже может почувствовать другое животное.

ГКГ-пептиды попадают в носовую полость, а оттуда — в небольшое углубление, вомероназальный орган (который есть у человека, мышей и еще ряда позвоночных), где встречаются со специальными сенсорными нейронами. Поиски рецепторов, воспринимающих ГКГ-пептиды, продолжаются до сих пор (P. S. C. Santos et al., 2016.

MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal). Однако понятно, что они тоже должны обладать большим разнообразием, чтобы связываться с ГКГ-пептидами самой разной формы. Эти рецепторы и помогают животному отличить знакомый запах от незнакомого.

Самый знакомый запах на свете — свой собственный. Похожие на него, но немного отличающиеся — запахи родственников. А незнакомые и ни на что не похожие запахи сигнализируют о присутствии неродственных особей.

Стратегии поведения

Распознавание родственников можно использовать для выстраивания поведенческой стратегии (J. S. Ruff et al., 2012. MHC signaling during social communication).

Например, родители узнают своих детей, чтобы не перепутать их с чужими и быть уверенными, что заботятся о своем потомстве (у людей, конечно, работают более продвинутые механизмы).

В группах, где несколько самок с детьми живут рядом (например, у мышей), самки заботятся не только о своих детях, но и о детях близких родственников, и для этого тоже важно распознавание. Самцы же могут выстраивать коалиции для совместной охраны территории и самок (P. S. C. Santos et al., 2017.

Can MHC-assortative partner choice promote offspring diversity? A new combination of MHC-dependent behaviours among sexes in a highly successful invasive mammal), как это работает, например, у енотов-полоскунов. В таких случаях важно формировать коалицию с родственниками, чтобы добиваться передачи по наследству общих с ними генов.

Наконец, большинство видов позвоночных (но не все) определяют партнеров для спаривания по запаху.

Это служит, с одной стороны, для повышения разнообразия белков ГКГ в популяции (чем больше разнообразие, тем больше чужеродных молекул эти белки могут связать и тем выше шанс успешного сопротивления инфекции).

С другой стороны, это нужно для того, чтобы избежать близкородственных скрещиваний и проявления рецессивных мутаций (см. Доминантность).

В результате часто (например, в случае тех же енотов) получается так, что в популяции сталкиваются две противоположные стратегии: самки предпочитают наиболее далеких от себя генетических партнеров, а самцы объединяются в группы, чтобы предложить самкам одни и те же гены. И наличие двух разнонаправленных тенденций позволяет добиться оптимального генетического расстояния между партнерами, не слишком близкого и не слишком далекого.

Однако в некоторых случаях выбор партнера происходит не только до спаривания, но и после него. То есть даже если сперматозоиды самца оказались внутри организма самки, нет никакой гарантии, что им удастся оплодотворить яйцеклетку и что эмбрион приживется и успешно имплантируется. Например, у мышей наблюдается эффект Брюс (см.

 Bruce effect): если самка успешно забеременела, а потом к ней подселили ранее не знакомого самца, то у нее происходит выкидыш. Полагают, что этот механизм помогает избежать инфантицида: самец не признает детей как своих и может их убить, а следовательно, бесполезно их вынашивать и рожать (см.

также новость Самки гелад избавляются от нежелательной беременности, «Элементы», 13.03.2012).

У лошадей же имеет место другой эффект: если кобыла живет со знакомыми жеребцами, а потом ее увозят спариваться к каким-нибудь другим самцам, то по возвращении домой у нее повышается вероятность выкидыша (L. Bartoš et al., 2011. Promiscuous behaviour disrupts pregnancy block in domestic horse mares).

Авторы обсуждаемой статьи взялись подробно рассмотреть этот феномен у лошадей. Более того, они поставили целью выяснить, насколько он зависит конкретно от белков ГКГ.

Кобыл содержали в специальных вольерах с решетками, сквозь которые они могли в течение всего эксперимента общаться с жеребцами-стимулами (так авторы называют генетически далеких жеребцов), но не могли с ними спариваться (рис. 4).

У кобыл стимулировали овуляцию и искусственно осеменяли их спермой, взятой от других жеребцов. Затем смотрели, в каких случаях наступает беременность.

Оказалось, что вероятность наступления беременности не зависит от того, чьей спермой осеменяли лошадей — родственного им жеребца или генетически далекого.

Не влияло на эту вероятность и полное генетическое расстояние между кобылой и жеребцом-стимулом (основанное на микросателлитных маркерах с 20 хромосом).

Значимым было только количество общих генов (и, следовательно, белков) ГКГ у кобылы и жеребца-стимула: чем меньше сходство ГКГ, тем больше вероятность сохранения беременности (рис. 5). От других маркеров генетического родства зависимость обнаружить не удалось.

Похожие результаты встречались и в других экспериментах, например, на курах (H. Løvlie et al., 2013. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males). Судя по всему, в этих ситуациях работает такой механизм: самка воспринимает сигнал ГКГ от находящегося рядом самца и «решает», что сперма принадлежит ему.

А значит, если он близкий родственник, то беременеть не стоит. То есть выбор — забеременеть или нет — совершается в яйцеводе. Такой выбор партнера, который делает самка в зависимости от окружения не только до, но и после спаривания (после проникновения спермы в ее половые пути), называют скрытым выбором самок (Cryptic female choice; см.

Скрытый выбор самок помогает сверчкам избежать близкородственных скрещиваний, «Элементы», 03.04.2013). Реально выбор совершается на эндокринном уровне.

В разных исследованиях было отмечено, что в случае, когда логично прервать беременность (например, когда кобыла чувствует запах родственного жеребца) подавляется выделение гормона пролактина, что приводит к отторжению эндометрия (внутреннего слоя матки) и невозможности имплантации эмбриона.

Однако есть и работы, в которых предполагается наличие альтернативных механизмов. Например, в 2015 году ученые искусственно оплодотворяли мышей смесью сперматозоидов от родственных и неродственных особей (см. R. C. Firman, L. W. Simmons, 2015. Gametic interactions promote inbreeding avoidance in house mice).

И при этом яйцеклетка взаимодействовала только с неродственными сперматозоидами. Несмотря на то, что на сперматозоидах обнаружены молекулы ГКГ, механизмы подобной избирательности пока остаются неизвестными.

Что там у людей?

Источник: https://elementy.ru/novosti_nauki/433180/Kobyly_opredelyayut_beremenet_ili_net_po_glavnomu_kompleksu_gistosovmestimosti_soseda

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.